1、DataFrame 简介
Pandas DataFrame是2维数据结构,例如,2维数组或具有行和列的表。
例如:
创建一个简单的Pandas DataFrame:
import pandas as pd
data = [['张三', 21, '男'], ['李四', 26, '女'], ['王五', 33, '男']]
df = pd.DataFrame(data)
print(df)
输出:
0 1 2 0 张三 21 男 1 李四 26 女 2 王五 33 男
2、loc定位行
从上面的结果可以看出,DataFrame就像是一个具有行和列的表。
Pandas使用loc
属性返回一个或多个指定行
例如:
返回第0行:
print(df.loc[0])
输出:
0 张三
1 21
2 男
Name: 0, dtype: object
None
注意:此示例返回Pandas Series。
例如:
返回第0行和第1行:
print(df.loc[[0, 1]])
输出:
0 1 2 0 张三 21 男 1 李四 26 女
注意:使用[]
时,结果是熊猫DataFrame。
3、命名索引和列名
使用columns
和index
参数,可以命名自己的列名和索引。
例如:
添加名称列表,为每一行命名:
import pandas as pd
data = [['张三', 21, '男'], ['李四', 26, '女'], ['王五', 33, '男']]
df = pd.DataFrame(data, columns=['姓名', '年龄', '性别'], index=['a', 'b', 'c'])
print(df)
输出:
姓名 年龄 性别 a 张三 21 男 b 李四 26 女 c 王五 33 男
4、定位命名索引
在loc
属性中使用命名索引返回指定的行。
例如:
输出 "a":
print(df.loc["a"])
输出:
姓名 张三
年龄 21
性别 男
Name: a, dtype: object
5、将文件加载到DataFrame
如果数据集存储在文件中,Pandas可以将它们加载到DataFrame中。
例如:
将逗号分隔的文件(CSV文件)加载到DataFrame中:
import pandas as pd
df = pd.read_csv('data.csv')
print(df)
相关文档: