df = pd.DataFrame([[1990,7,1000],[1990,8,2500],[1990,9,2500],[1990,9,1500],[1991,1,250],[1991,2,350],[1991,3,350],[1991,7,450]], columns = ['year','month','data1'])
示例数据:
year month data1 1990 7 1000 1990 8 2500 1990 9 2500 1990 9 1500 1991 1 250 1991 2 350 1991 3 350 1991 7 450
多个条件例如:
df = df.loc[(df.year != 1990) | (df.month != 7)]
1、使用apply和isin实现
import pandas as pd df = pd.DataFrame([[1990,7,1000],[1990,8,2500],[1990,9,2500],[1990,9,1500],[1991,1,250],[1991,2,350],[1991,3,350],[1991,7,450]], columns =['year','month','data1']) mask = ~df[['year', 'month']].apply(tuple, 1).isin([(1990, 7), (1990, 8), (1991, 1)]) print(df[mask])
或者
import pandas as pd df = pd.DataFrame([[1990,7,1000],[1990,8,2500],[1990,9,2500],[1990,9,1500],[1991,1,250],[1991,2,350],[1991,3,350],[1991,7,450]], columns =['year','month','data1']) mask = ~(df.year*100 + df.month).isin({199007, 199008, 199101}) df[mask]
输出:
year month data1 2 1990 9 2500 3 1990 9 1500 5 1991 2 350 6 1991 3 350 7 1991 7 450
2、使用merge实现
import pandas as pd df = pd.DataFrame([[1990,7,1000],[1990,8,2500],[1990,9,2500],[1990,9,1500],[1991,1,250],[1991,2,350],[1991,3,350],[1991,7,450]], columns =['year','month','data1']) out = df.drop(df.reset_index().merge(pd.DataFrame({'year':[1990,1990,1991],'month':[7,8,1]}))['index']) print(out)
或者
import pandas as pd df = pd.DataFrame([[1990,7,1000],[1990,8,2500],[1990,9,2500],[1990,9,1500],[1991,1,250],[1991,2,350],[1991,3,350],[1991,7,450]], columns =['year','month','data1']) out = df.merge(pd.DataFrame({'year':[1990,1990,1991],'month':[7,8,1]}),indicator=True,how='left').loc[lambda x : x['_merge']=='left_only'] print(out)
输出:
year month data1 2 1990 9 2500 3 1990 9 1500 5 1991 2 350 6 1991 3 350 7 1991 7 450