1、训练模型
训练模型是类似图像分类问题的过程。 下面的代码片段在提供的数据集上完成了训练模型的过程:
def fit(epoch,model,data_loader,phase = 'training',volatile = False): if phase == 'training': model.train() if phase == 'training': model.train() if phase == 'validation': model.eval() volatile=True running_loss = 0.0 running_correct = 0 for batch_idx , (data,target) in enumerate(data_loader): if is_cuda: data,target = data.cuda(),target.cuda() data , target = Variable(data,volatile),Variable(target) if phase == 'training': optimizer.zero_grad() output = model(data) loss = F.nll_loss(output,target) running_loss + = F.nll_loss(output,target,size_average = False).data[0] preds = output.data.max(dim = 1,keepdim = True)[1] running_correct + = preds.eq(target.data.view_as(preds)).cpu().sum() if phase == 'training': loss.backward() optimizer.step() loss = running_loss/len(data_loader.dataset) accuracy = 100. * running_correct/len(data_loader.dataset) print(f'{phase} loss is {loss:{5}.{2}} and {phase} accuracy is {running_correct}/{len(data_loader.dataset)}{accuracy:{return loss,accuracy}})
该方法包括不同的训练和验证逻辑。使用不同的模式有两个主要原因:
- 在训练模式中,退出删除了一定百分比的值,这在验证或测试阶段不应该发生。
- 对于训练模式,我们计算梯度并改变模型的参数值,但在测试或验证阶段不需要反向传播。