Pandas是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。Pandas提供了大量能使我们快速便捷地处理数据的函数和方法。你很快就会发现,它是使Python成为强大而高效的数据分析环境的重要因素之一。本文主要介绍一下Pandas中pandas.DataFrame.items方法的使用。

DataFrame.items(self)            [source]

迭代器遍历(列名,Series)对。

遍历DataFrame列,返回一个具有列名称和内容为Series的元组。

Yields:

label : 对象

要迭代的DataFrame的列名。

content : Series

属于每个标签的列条目(作为Series)。

例子

>>> df = pd.DataFrame({'species': ['bear', 'bear', 'marsupial'],
... 'population': [1864, 22000, 80000]},
... index=['panda', 'polar', 'koala'])
>>> df
species population
panda bear 1864
polar bear 22000
koala marsupial 80000
>>> for label, content in df.items():
... print('label:', label)
... print('content:', content, sep='\n')
...
label: species
content:
panda bear
polar bear
koala marsupial
Name: species, dtype: object
label: population
content:
panda 1864
polar 22000
koala 80000
Name: population, dtype: int64

推荐文档

相关文档

大家感兴趣的内容

随机列表