1、训练模型
训练模型是类似图像分类问题的过程。 下面的代码片段在提供的数据集上完成了训练模型的过程:
def fit(epoch,model,data_loader,phase
= 'training',volatile = False):
if phase == 'training':
model.train()
if phase == 'training':
model.train()
if phase == 'validation':
model.eval()
volatile=True
running_loss = 0.0
running_correct = 0
for batch_idx , (data,target) in enumerate(data_loader):
if is_cuda:
data,target = data.cuda(),target.cuda()
data , target = Variable(data,volatile),Variable(target)
if phase == 'training':
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output,target)
running_loss + =
F.nll_loss(output,target,size_average =
False).data[0]
preds = output.data.max(dim = 1,keepdim = True)[1]
running_correct + =
preds.eq(target.data.view_as(preds)).cpu().sum()
if phase == 'training':
loss.backward()
optimizer.step()
loss = running_loss/len(data_loader.dataset)
accuracy = 100. * running_correct/len(data_loader.dataset)
print(f'{phase} loss is {loss:{5}.{2}} and {phase} accuracy is {running_correct}/{len(data_loader.dataset)}{accuracy:{return loss,accuracy}})
该方法包括不同的训练和验证逻辑。使用不同的模式有两个主要原因:
- 在训练模式中,退出删除了一定百分比的值,这在验证或测试阶段不应该发生。
- 对于训练模式,我们计算梯度并改变模型的参数值,但在测试或验证阶段不需要反向传播。