示例代码:
import pandas as pd
df1 = pd.DataFrame({'depth': [0.500000, 0.600000, 1.300000],
'VAR1': [38.196202, 38.198002, 38.200001],
'profile': ['profile_1', 'profile_1','profile_1']})
df2 = pd.DataFrame({'depth': [0.600000, 1.100000, 1.200000],
'VAR2': [0.20440, 0.20442, 0.20446],
'profile': ['profile_1', 'profile_1','profile_1']})
df3 = pd.DataFrame({'depth': [1.200000, 1.300000, 1.400000],
'VAR3': [15.1880, 15.1820, 15.1820],
'profile': ['profile_1', 'profile_1','profile_1']})
要实现输出结果:
name_profile depth VAR1 VAR2 VAR3
profile_1 0.500000 38.196202 NaN NaN
profile_1 0.600000 38.198002 0.20440 NaN
profile_1 1.100000 NaN 0.20442 NaN
profile_1 1.200000 NaN 0.20446 15.1880
profile_1 1.300000 38.200001 NaN 15.1820
profile_1 1.400000 NaN NaN 15.1820
1、使用concat合并
import pandas as pd
df1 = pd.DataFrame({'depth': [0.500000, 0.600000, 1.300000],
'VAR1': [38.196202, 38.198002, 38.200001],
'profile': ['profile_1', 'profile_1','profile_1']})
df2 = pd.DataFrame({'depth': [0.600000, 1.100000, 1.200000],
'VAR2': [0.20440, 0.20442, 0.20446],
'profile': ['profile_1', 'profile_1','profile_1']})
df3 = pd.DataFrame({'depth': [1.200000, 1.300000, 1.400000],
'VAR3': [15.1880, 15.1820, 15.1820],
'profile': ['profile_1', 'profile_1','profile_1']})
dfs = [df.set_index(['profile', 'depth']) for df in [df1, df2, df3]]
print(pd.concat(dfs, axis=1).reset_index())
# profile depth VAR1 VAR2 VAR3
# 0 profile_1 0.5 38.198002 NaN NaN
# 1 profile_1 0.6 38.198002 0.20440 NaN
# 2 profile_1 1.1 NaN 0.20442 NaN
# 3 profile_1 1.2 NaN 0.20446 15.188
# 4 profile_1 1.3 38.200001 NaN 15.182
# 5 profile_1 1.4 NaN NaN 15.182
2、使用merge合并
import pandas as pd
df1 = pd.DataFrame({'depth': [0.500000, 0.600000, 1.300000],
'VAR1': [38.196202, 38.198002, 38.200001],
'profile': ['profile_1', 'profile_1','profile_1']})
df2 = pd.DataFrame({'depth': [0.600000, 1.100000, 1.200000],
'VAR2': [0.20440, 0.20442, 0.20446],
'profile': ['profile_1', 'profile_1','profile_1']})
df3 = pd.DataFrame({'depth': [1.200000, 1.300000, 1.400000],
'VAR3': [15.1880, 15.1820, 15.1820],
'profile': ['profile_1', 'profile_1','profile_1']})
from functools import partial, reduce
dfs = [df1,df2,df3]
df_final = pd.DataFrame(columns=df1.columns)
for df in dfs:
df_final = df_final.merge(df, on=['depth','profile'], how='outer')
print(df_final)
# depth VAR1 profile VAR2 VAR3
#0 0.6 38.198002 profile_1 0.20440 NaN
#1 0.6 38.198002 profile_1 0.20440 NaN
#2 1.3 38.200001 profile_1 NaN 15.182
#3 1.1 NaN profile_1 0.20442 NaN
#4 1.2 NaN profile_1 0.20446 15.188
#5 1.4 NaN profile_1 NaN 15.182
3、使用append合并
import pandas as pd
df1 = pd.DataFrame({'depth': [0.500000, 0.600000, 1.300000],
'VAR1': [38.196202, 38.198002, 38.200001],
'profile': ['profile_1', 'profile_1','profile_1']})
df2 = pd.DataFrame({'depth': [0.600000, 1.100000, 1.200000],
'VAR2': [0.20440, 0.20442, 0.20446],
'profile': ['profile_1', 'profile_1','profile_1']})
df3 = pd.DataFrame({'depth': [1.200000, 1.300000, 1.400000],
'VAR3': [15.1880, 15.1820, 15.1820],
'profile': ['profile_1', 'profile_1','profile_1']})
df1.append(df2).append(df3).sort_values('depth')
# VAR1 VAR2 VAR3 depth profile
#0 38.196202 NaN NaN 0.5 profile_1
#1 38.198002 NaN NaN 0.6 profile_1
#0 NaN 0.20440 NaN 0.6 profile_1
#1 NaN 0.20442 NaN 1.1 profile_1
#2 NaN 0.20446 NaN 1.2 profile_1
#0 NaN NaN 15.188 1.2 profile_1
#2 38.200001 NaN NaN 1.3 profile_1
#1 NaN NaN 15.182 1.3 profile_1
#2 NaN NaN 15.182 1.4 profile_1